Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting

Highly accurate interval forecasting of a stock price index is fundamental to successfully making a profit when making investment decisions, by providing a range of values rather than a point estimate. In this study, we investigate the possibility of forecasting an interval-valued stock price index series over short and long horizons using multi-output support vector regression (MSVR). Furtherm...

متن کامل

Multiple - output support vector regression with a firefly algorithm for 1 interval - valued stock price index forecasting

6 Highly accurate interval forecasting of a stock price index is fundamental to 7 successfully making a profit when making investment decisions, by providing a range 8 of values rather than a point estimate. In this study, we investigate the possibility of 9 forecasting an interval-valued stock price index series over short and long horizons 10 using multi-output support vector regression (MSVR...

متن کامل

Support vector regression with chaos-based firefly algorithm for stock market price forecasting

Due to the inherent non-linearity and non-stationary characteristics of financial stock market price time series, conventional modeling techniques such as the Box–Jenkins autoregressive integrated moving average (ARIMA) are not adequate for stock market price forecasting. In this paper, a forecasting model based on chaotic mapping, firefly algorithm, and support vector regression (SVR) is propo...

متن کامل

A multiple-kernel support vector regression approach for stock market price forecasting

Support vector regression has been applied to stock market forecasting problems. However, it is usually needed to tune manually the hyperparameters of the kernel functions. Multiple-kernel learning was developed to deal with this problem, by which the kernel matrix weights and Lagrange multipliers can be simultaneously derived through semidefinite programming. However, the amount of time and sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Knowledge-Based Systems

سال: 2014

ISSN: 0950-7051

DOI: 10.1016/j.knosys.2013.10.012